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Abstract. For a quantum open system the so-called Schrödinger–Langevin picture has been
revisited. In a second-order perturbation it is shown that anon-Markovianevolution for the
stochastic state vector leads to a dissipative generator which has a Kossakowski–Lindblad form.
In this context it is possible to analyse the completely positive condition. The equivalence of this
picture with thetrace-outtechnique in the weak coupling approximation has been proved.

1. Introduction

Associated with a quantum open system, many stochastic wavefunctions (SWF) have been
introduced in recent years [1]. The approaches split into two groups: quantum diffusion
models [2] and quantum jump models [3–5]. With the aid of these models it is possible to
simulate the behaviour of individual quantum systems in a variety of situations like homodyne
and photon counting measurements. Alternatively SWF has also been used in the context of
wavepacket reduction [6, 7]. A remarkable point is that in all these models, it is possible to
associate a stochastic matrix, given by the outer product of the SWF, such that in mean value it
follows the evolution of the density matrix of the open system. Due to the fact that, in general,
the dynamics is assumed Markovian, this evolution is given by a Kossakowsky–Lindblad (KL)
generator [8–10]. This Markovian property can be seen in the models, by the use of white
fluctuations.

On the other hand, it is well known that a quantum open system generally follows a non-
Markovian evolution [11,12]. More specifically, if we are observing the dynamics of a system
(in a reduced Hilbert spaceHS) that is part of a big closed system, the reduced dynamics
is non-Markovian. A canonical example is a systemS in contact with a thermal bathB.
Nevertheless, owing to the difficulty that arises in dealing with a non-Markovian evolution, the
usual approach is to propose a Markovian dynamics that approximates the original one. In this
situation the most well known is theBorn–Markov approximation[13–15] (or weak coupling
approximation). As with SWF, much effort has been devoted to giving an interpretation of
the Born–Markov approximation in a manner that resembles a stochastic evolution. The
proposed models are based on the introduction of stochastic operators (quantum Langevin
equations) [16–18]. In this context, a natural question arises: is it possible to give an SWF (in
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theHS of an open system) that follows anon-Markovian evolution, such that in the Markovian
approximation it gives, for the reduced density matrix, the Born–Markov evolution? The
answer is yes, and this is one of the main tasks of this paper, summarized in what we call the
Schr̈odinger–Langevin picture(SL). This model follows the line of linear quantum diffusion
models [19]; nevertheless we start by postulating a non-white (coloured) stochastic dynamics.

The SL model was first introduced by van Kampen [20], where he was only concerned with
obtaining thestandardKL generator, without looking at the effective Hamiltonian (the shift)
or at the temperature dependence of the generator. Later on, in order to look at temperature
dependence, non-white noises were introduced into the approach [21,22].

In this paper we are going to tackle the previously-mentioned question and, in addition, we
are going to show an interesting relation between the SL picture and KL generators. This arises
because, in the context of a perturbation theory in the Kubo number, a dissipative generator of
the KL form appears. We will use the expressionKL form when the matrix that characterizes
the generator—the algebraic structureaαγ—could be negative. Due to this, the question of
positivity of the obtained generator arises. Since from the SL picture it is possible to build
up several KL generators from a family of correlation functions, this last question can be
addressed. In the same context, we investigate the possibility of assigning a stochastic non-
Markovian evolution to a given positive generator, and then obtain the same conditions that
appear in the Born–Markov approximation, analysing its positivity.

The paper is organized as follows. In section 2 we review KL generators and the Born–
Markov approximation, in order to make,a posteriori, a comparison with the SL picture.
Therefore the quantum generator of the semigroup will be written in an alternative form in
terms of the dissipative operatorD and the fluctuating superoperatorF [•]. From this we
show that a KL form is always obtained if wetrace outthe bath variables of a total system
S + B. This fact enlightens some difficulties posed by van Kampen and Oppenheim [17] in
arriving at a KL form tracing out the bath variables. In appendix A, to see the positivity of
this KL form, we analyse for a particular case (using Davies’ device [23–25]) a condition on
the interaction Hamiltonian betweenS andB. In section 3 we introduce the SL picture, and
a clear interpretation of the non-Markovian evolution for thestochastic state vectorin terms
of random operators is given. In section 3.1 we introduce a second-order perturbation theory
from which a KL form is obtained. In sections 3.2–3.4 we analyse several dynamics that
come from the different elections for the random operatorF(t) appearing in the SL equation,
and at the same time we show the problems that arise in trying to prove the equivalence of
each of these dynamics with a Born–Markov approximation (trace-out). In section 3.5 we
match the generator obtained from the SL picture with an arbitrary KL generator; thus a closed
interpretation is pointed out. Finally we give the conclusions and perspectives. In appendix B
we emphasize the parallelism between the SL picture and the quantum semigroup.

2. Quantum dissipative semigroups and weak coupling approximation

In quantum mechanics the most general form of a Markovian evolution, for a reduced density
matrixρ(t), that gives rise to irreversibility, is the so-called Kossakoswki–Lindblad generator
[8–10]. This generator gives a Markovian map that guarantees von Neumann’s conditions on
ρ(t), and also provides a completely positive map on the trace class operatorsT . This last
condition is much stronger than the usual positivity†.

In an arbitrary finite-dimensional Hilbert spaceHS (dimHS = N ) this KL generator in

† A linear map3 : A −→ B, A andB, C∗ algebras, is said to becompletely positiveif the tensor product map
3(n) = 3⊗ 1n : A⊗M(n) −→ B ⊗M(n), is positive for all positive integersn.
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the Schr̈odinger picture is (¯h = 1)

dρ(t)

dt
= K[ρ(t)] ≡ −i[Heff , ρ(t)] + 1

2

N2−1∑
α,γ=1

aαγ ([Vα, ρ(t)V
†
γ ] + [Vαρ(t), V

†
γ ]) (1)

whereHeff is an effective Hamiltonian acting on the systemS; Vα, (α = 0, 1, . . . , N2− 1) is
a basis in theC∗ algebra of theN × N complex matricesM(N), V0 = 1, and thealgebraic
structureaαγ is a Hermitian positive-definite matrix characterizing the dissipation and the
fluctuations of theopen quantum systemS.

Remark 1. This generator can trivially be written in the form

dρ(t)

dt
= −i[Heff , ρ(t)] − {D, ρ(t)}+ + F [ρ(t)] (2)

where{·, ·}+ denotes the anticommutator and

D = 1
2

N2−1∑
α,γ=1

aαγ V
†
γ Vα F [•] =

N2−1∑
α,γ=1

aαγ Vα • V †
γ

D will be called the dissipative operator andF [•] the fluctuating superoperator.

An interpretation of these operators will be shown in the following sections. This splitting
is frequently used in the context of the quantum jump approach [3,4].

How to construct the KL generator for a given open quantum system is a well known
problem. In principle we wish to find the KL generator from the underlying Hamiltonian
dynamics for thetotal closed system(systemS+ bathB)

HT = HS +HB + λHI (3)

but this is often technically impossible and therefore one needs to introduce some
approximations in order to arrive to the quantum master equation for the reduced density
matrix. Considering the total Liouville equation up toO(λ2), theBorn–Markov approximation
gives the ‘quantum master equation’ [10,13–16,20]

d

dt
ρ(t) = −i[HS, ρ(t)] − λ2

∫ ∞
0

dτ TrB([HI , [HI(−τ), ρ(t)⊗ ρeB ]]) (4)

whereHI(−τ) ≡ e−iτ(HB+HS)HIeiτ(HB+HS), andρeB is the equilibrium density matrix of the
bathB. The trace is taken over the bath variables, thereby reducing the evolution in the Hilbert
spaceHT = HS ⊗HB to an evolution inHS .

Remark 2. Equation (4) can be written in a KL form . We emphasize that with the word form
we are not saying that the algebraic structure is going to be positive, i.e. only the Hermitian
condition onaαγ is assured.

This fact follows by introducing the Jacobi identity into the integrand of formula (4). We
then get

d

dt
ρ(t) = −i[HS, ρ(t)] − λ

2

2

∫ ∞
0

dτ TrB([[HI ,HI (−τ)], ρ(t)⊗ ρeB ]

+[HI , [HI(−τ), ρ(t)⊗ ρeB ]] + [HI(−τ), [HI , ρ(t)⊗ ρeB ]]). (5)

Now, using that

[A, [B,C]] + [B, [A,C]] = {{A,B}+, C}+ − 2(ACB +BCA)



634 A A Budini et al

equation (5) reduces to

dρ(t)

dt
= −i[Heff , ρ(t)] − {D, ρ(t)}+ + F [ρ(t)] (6)

with

Heff = HS − i
λ2

2

∫ ∞
0

dτ TrB([HI ,HI (−τ)]ρeB) (7)

D = λ2

2

∫ ∞
0

dτ TrB({HI ,HI (−τ)}+ρeB) (8)

F [ρ(t)] = λ2
∫ ∞

0
dτ TrB(HIρ(t)⊗ ρeBHI (−τ) +HI(−τ)ρ(t)⊗ ρeBHI ). (9)

Therefore (4) has the KL form because these last equations have the structure of equation (2).
In order to obtain the algebraic structureaαγ , let us assume that the interaction Hamiltonian

HI has the general expression

HI =
n∑
β=1

Vβ ⊗ Bβ n 6 N2 − 1 (10)

whereVβ belong toHS andBβ are bath operators. Using explicitly the fact thatHI is Hermitian,
(7)–(9) can be rewritten in a slightly different manner; this fact will be useful for our future
algebra. Introducing the notation

χαβ(−τ) ≡ TrB(ρ
e
BB

†
αBβ(−τ)) (11)

in those equations, the effective HamiltonianHeff , the dissipative operatorD, and the
fluctuating superoperatorF [•] read

Heff = HS − i
λ2

2

∑
αβ

∫ ∞
0

dτ (χαβ(−τ)V †
α Vβ(−τ)− χ∗αβ(−τ)V †

β (−τ)Vα) (12)

D = λ2

2

∑
αβ

∫ ∞
0

dτ (χαβ(−τ)V †
α Vβ(−τ) + χ∗αβ(−τ)V †

β (−τ)Vα) (13)

F [•] = λ2
∑
αβ

∫ ∞
0

dτ (χαβ(−τ)Vβ(−τ) • V †
α + χ∗αβ(−τ)Vα • V †

β (−τ)). (14)

Finally, defining the matrixCβγ (−τ) from

Vβ(−τ) ≡ e−iτHSVβe+iτHS =
N2−1∑
γ=1

Cβγ (−τ)Vγ (15)

and using the fact that the indices in (12)–(14) are dumb, equation (6) can be put as in the
previous form (1), where now

Heff = HS − i
λ2

2

∑
αβγ

∫ ∞
0

dτ (χγβ(−τ)Cβα(−τ)− χ∗αβ(−τ)C∗βγ (−τ))V †
γ Vα (16)

and thealgebraic structureis given by

aαγ = λ2
∑
β

∫ ∞
0

dτ (χγβ(−τ)Cβα(−τ) + χ∗αβ(−τ)C∗βγ (−τ)). (17)

Armed with these definitions we can now analyse the algebraic structureaαγ . From equation
(17) it is simple to see that matrixaαγ is Hermitian. Nevertheless, as we mentioned before, a



On the quantum dissipative generator 635

necessary and sufficient condition to guarantee the completely positive condition on the map
is [aαγ ] > 0. Note that if we deal with a situation where the algebraic structure is not positive
definite, it is always possible to introduce amathematical device—due to Davies [10,23–25]—
which leads to a KL generator, (see appendix A).

Remark 3. A necessary condition to assure that the algebraic structure will be positive can
be seen in the following way. Let us assume that the interaction Hamiltonian is written in
a particular basis as:HI =

∑n
β=1Vβ ⊗ Bβ with n 6 N2 − 1, and that the half-Fourier

transform of the correlations of the bath are not zero. Then the set{Vβ}nβ=1 ought to be closed
under Heisenberg representation, i.e.

Vβ(−τ) ≡ e−iτHSVβe+iτHS =
m∑
γ=1

Cβγ (−τ)Vγ with m 6 n (18)

otherwise the matrixaαγ will not be positive.

Whenm > n, Sylvester’s criterion shows that this affirmation can easily be proved by
writing the elements of the matrix (17). A simple example is the spin–boson system with an
interaction Hamiltonian proportional to the Pauli matrixσx . In this case condition (18) is not
fulfilled, giving in this case a non-positive matrixaαγ .

Remark 4. Introducing the definition

0αβ(−τ) ≡ TrB(ρ
e
BBαBβ(−τ)) (19)

in (7), the effective Hamiltonian can also be written in the following way

Heff = HS − i
λ2

2

∑
αβ

∫ ∞
0

dτ (0αβ(−τ)VαVβ(−τ)− 0∗αβ(−τ)V †
β (−τ)V †

α ). (20)

Using in this expression the matrixCβγ (−τ) (see definition (15)) results in

Heff = HS − i
λ2

2

∑
αβγ

∫ ∞
0

dτ (0αβ(−τ)Cβγ (−τ)VαVγ − 0∗αβ(−τ)C∗βγ (−τ)V †
γ V

†
α ). (21)

Note that it was possible to write expression (21) because the interaction Hamiltonian is,
of course, Hermitian. Then the use of thepseudo-correlation0αβ(−τ) is only a change of
notation. These formulae will be seen to be useful when looked at in the SL context.

3. The Schr̈odinger–Langevin picture

In this section we present the analysis concerning the SL picture. The starting point of this
formalism is to postulate a non-Markovian stochastic multiplicative equation for the state vector
of the quantum open systemS. This equation is written in terms of an unknown Hermitian
linear operatorU representing the dissipation, and a random operatorF(t) representing the
effect of the fluctuations as a result of the interaction with the ‘external world’. The SL equation
reads

d

dt
|9〉 = [−iHS − λ(U + iF(t))]|9〉 (22)

whereλ is the coupling parameter and we assume that〈F(t)〉 = 0. We also assume that the
dissipation and the fluctuations are both of the same order inλ. Other characterizations [10,18]
concerning the dependence on the strength parameterλ, can also be made in the context of the
present picture.
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Introducing thestochastic matrixρst (t) ≡ |9〉〈9|, the connection between the reduced
density matrixρ(t) and the wavefunction is given by the assumption that in mean value over
the realizations ofF(t) andF†(t)

ρ(t) = 〈ρst (t)〉. (23)

The probabilistic weight of each realizationρst (t) is characterized by the probability of the
corresponding realization of the matrix noises. From (22) the stochastic matrixρst (t) evolves
with the following non-Markovian equation

d

dt
ρst (t) = −i[HS, ρst (t)] − λ{U, ρst (t)}+ − iλ(F(t)ρst (t)− ρst (t)F†(t)). (24)

A clear interpretation of this evolution equation can be seen immediately, as follows. Due to
the fact that, in general, the stochastic operatorF(t) is non-Hermitian, it is possible to split it
in the form

F(t) = H̃ (t)− iŨ (t) (25)

whereH̃ (t) and Ũ (t) are stationary stochastic Hermitian operators with zero mean value.
Introducing this notation in equation (22) the evolution of thestochastic state vectorcan be
rewritten as

d

dt
|9〉 = −i(HS + λH̃ (t))|9〉 − λ(U + Ũ (t))|9〉. (26)

Therefore each realization of thestochastic matrixρst (t) satisfies the non-Markovian evolution
equation

d

dt
ρst (t) = −i[HS + λH̃ (t), ρst (t)] − λ{U + Ũ (t), ρst (t)}+ (27)

which is nothing more than (24) written in terms of Hermitian operators. Now its physical
interpretation is clear. From (27) note that:

(i) The von Neumann term has a total Hamiltonian with a random fluctuating contribution
λH̃ (t).

(ii) The purely irreversible term (anticommutator) has two contributions: the first one is a
sure operatorU and the second is a random operatorŨ (t) representing its fluctuations.

The remarkable point is that both random operatorsH̃ (t) andŨ (t) are correlated, and this
correlation will depend on the chosen interaction betweenS and the external world. When the
external action is a thermal bath, this correlation is temperature dependent.

In order to get a closed equation for the reduced density matrix〈ρst (t)〉 of S, we will
introduce a second-order perturbation theory in the coupling parameterλ. Then the unknown
operatorU will be found in a consistent way demanding Tr〈ρst (t)〉 = 1, so this linear
(sure) operatorU will be, characterized by the correlations of the stochastic operatorsF(t)
andF†(t). In this way we also give a closed evolution for the SWF (22).

3.1. The second-order cumulant approximation

The general stochastic equation (24), with an arbitrary multiplicative noise, can be written in
the compact form

d

dt
u(t) = {Ao + λA1(t)}u(t) (28)

whereAo is a deterministic superoperator andA1(t) is a stochastic one characterized by its
statistical properties. Using Stratonovich’s calculus in a second-order cumulant expansion [20]
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(in the small Kubo numberλτc) and assuming that the correlation timeτc of the stochastic
operatorA1(t) is smaller than any deterministic time evolution ofu(t), the average〈u(t)〉
satisfies the closed Markovian equation

d

dt
〈u(t)〉 =

{
Ao + λ〈A1(t)〉 + λ2

∫ ∞
0

dτ 〈〈A1(t)e
τAoA1(t − τ)〉〉e−τAo

}
〈u(t)〉. (29)

Then we can identify

〈 u(t)〉 ≡ 〈ρst (t)〉 = ρ(t)
Ao ≡ −i[Hs, •]
A1(t) ≡ −{U, •}+ − i(F(t) • − • F†(t)).

(30)

Thus, after a little algebra, (29) can be rewritten in the form

d

dt
ρ(t) = −i[HS, ρ(t)] − λ{U, ρ(t)}+ + λ2

∫ ∞
0
(〈〈F(t)ρ(t)F†(t − τ)〉〉

+〈〈F(t − τ)ρ(t)F†(t)〉〉
−〈〈F(t)F(t − τ)〉〉ρ(t)− ρ(t) 〈〈F†(t − τ)F†(t)〉〉) dτ (31)

where all time-dependent operators are given in Heisenberg’s representation, i.e.F(τ ) ≡
eiτHSFe−iτHS . Demanding the condition Trρ(t) = 1, the linear operatorU must fulfil

U = λ

2

∫ ∞
0

dτ (〈〈F†(t)F(t − τ)〉〉 + 〈〈F†(t − τ)F(t)〉〉

−〈〈F(t)F(t − τ)〉〉 − 〈〈F†(t − τ)F†(t)〉〉). (32)

In this way the conservation in mean value of the stochastic wavefunction norm is also
guaranteed. Introducing the expression forU back into (31), the evolution ofρ(t) can be
written in the form

dρ(t)

dt
= −i[Heff , ρ(t)] − {D, ρ(t)}+ + F [ρ(t)] (33)

where the Hamiltonianshift is characterized by the effective Hamiltonian

Heff = HS − i
λ2

2

∫ ∞
0

dτ (〈〈F(t)F(t − τ)〉〉 − 〈〈F†(t − τ)F†(t)〉〉). (34)

The operatorD and the superoperatorF [•] are given by

D = λ2

2

∫ ∞
0

dτ (〈〈F†(t)F(t − τ)〉〉 + 〈〈F†(t − τ)F(t)〉〉) (35)

F [•] = λ2
∫ ∞

0
dτ (〈〈F(t) • F†(t − τ)〉〉 + 〈〈F(t − τ) • F†(t)〉〉). (36)

These equations show that the SL picture leads to an evolution equation forρ(t) that has the
form of a KL generator. We point out that it is always possible to rewrite the last expressions
for Heff , D andF [•] in terms of the Hermitian stochastic operatorsH̃ (t) and Ũ (t), see
appendix B.

At this point we can get profit from the SL picture by modelling different objects
〈〈F†(t)F(t − τ)〉〉. However, to proceed with the calculation, a full matrix cumulant theory
would be required [26]. To avoid this, we assume that the influence of the environment can
be represented in a ‘noisy way’. Therefore we write the stochastic operatorF(t) as linear
combinations of complex-random numbers times operators inHS

F(t) =
n∑
α=1

lα(t)Vα n 6 N2 − 1. (37)
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The numberslα(t) are stationary complex stochastic processes with zero mean value and
non-white correlations. This model is the simplest form ofF(t) because, in this way, only a
cumulant theory of stochastic process is needed. Introducing (37) into the formula (34) we
obtain forHeff

Heff = HS − i
λ2

2

∑
αβγ

∫ ∞
0

dτ (〈〈lα(t) lβ(t − τ)〉〉Cβγ (−τ)VαVγ − h.c.) (38)

and from (35) and (36) the algebraic structure reads

aαγ = λ2
∑
β

∫ ∞
0

dτ (〈〈l∗γ (t)lβ(t − τ)〉〉Cβα(−τ) + 〈〈lα(t)l∗β(t − τ)〉〉C∗βγ (−τ)) (39)

where the matrixCβγ (−τ) was defined in (15) and〈〈· · ·〉〉 are the stationary correlations of
the noises.

At this stage (as soon as a basis onHS is chosen) the correlations can be selected, in
an empirical way, to represent different physical situations [26, 27] and at the same time to
assure positivity. Note that the positivity only depends on the correlations〈〈l∗α(t)lβ(t − τ)〉〉
because the pseudo-correlations〈〈lα(t)lβ(t − τ)〉〉 only appear in the expression ofHeff . We
remark that from (38), (39) and for anyF(t) (Hermitian or not, see (37)), if the correlations
of the noises are white, the shift will cancel out and the dissipative generator will give the
standardKL semigroup. Therefore a shift can only be obtained if the underlying dynamics is
non-Markovian.

Now we wonder if it is possible to find complex stochastic processes in such a way as to
match numerically an arbitrary givenalgebraic structure. Before going to the most general case
(see section 3.5) we first answer this question whenaαγ comes from the trace-out technique
(see (17)). In this case the ‘external world’ is a thermal bath, so we are going to explore if
its influences can be represented in a ‘noisy way’ (coloured noise), and not just in the usual
operator form [16,26].

We note that (38) and (39) are formally equal to the terms obtained from the trace-out
technique (see (21) and (17)) if we make the identification

χαβ(−τ)↔ 〈〈l∗α(t)lβ(t − τ)〉〉
0αβ(−τ)↔ 〈〈lα(t)lβ(t − τ)〉〉.

(40)

Remark 5. In principle we could ask how to find a set of correlated noises that fulfil, in a
consistent way, relation (40). This problem does not have a direct solution. Therefore we will
now analyse all the possible dynamics that come from the different elections forF(t): the
Hermitian, anti-Hermitian, and the non-Hermitian case.

3.2. Case whenF(t) is a Hermitian random operator

In this section we will assume that the random operatorF(t), appearing in the SL picture
(22), is Hermitian. Using (25) it is trivial to see that ifF(t) = F†(t) it will be equivalent to
F(t) = H̃ (t) andŨ (t) = 0. On the other hand, from (32) it is simple to see thatU = 0.
Therefore from (26) and (27) the dynamics results

d

dt
|9〉 = −i(HS + λH̃ (t))|9〉 (41)

and for thestochastic matrixρst (t)

d

dt
ρst (t) = −i[HS + λH̃ (t), ρst (t)]. (42)
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We see that each realization of the stochastic matrixρst (t) is normalized as is, of course,
the stochastic state vector. The remarkable point is that this type of evolution,stochastic
Hamiltonian, gives rise to a KL form. Before going into any detail let us writeHeff , D, and
F [•] in terms of the stochastic HamiltoniañH(t). Then equations (34)–(36) will read

(i) the effective Hamiltonian

Heff = HS − i
λ2

2

∫ ∞
0

dτ 〈〈[H̃ (t), H̃ (t − τ)]〉〉 (43)

(ii) the operatorD

D = λ2

2

∫ ∞
0

dτ 〈〈{H̃ (t), H̃ (t − τ)}+〉〉 (44)

(iii) the superoperatorF [•]

F [•] = λ2
∫ ∞

0
dτ (〈〈H̃ (t) • H̃ (t − τ)〉〉 + 〈〈H̃ (t − τ) • H̃ (t)〉〉). (45)

Note that in this case the SL picture is formally equivalent to the trace-out technique just by
replacingHI → H̃ (t) = H̃ (t)† (see (7)–(9)) and changing Tr[•] by a second cumulant object.
Because we are assuming thatF(t) = H̃ (t) =∑n

α=1 lα(t)Vα (n 6 N2 − 1), it is possible to
assign a one-to-one correspondence between each operator of the bath and a complex noise
(see (10)) in the form:

Bα ↔ lα B†
α ↔ l∗α. (46)

Now our task is to find the complex stochastic processlα(t) in such a way to match the
corresponding correlation functions that come from the operators of the bathBα, see (40).
Before doing this, we note that owing to Hermiticity ofH̃ (t), the expression ofHeff in (38)
can be rewrittenonly in terms of〈〈l∗α(t)lβ(t − τ)〉〉, and the resulting expression is the one
in (16) changing quantum correlations by noise correlations. Then in order to match both
generators it would only be required that

TrB(ρ
e
BB

†
α Bβ(−τ)) ?=〈〈l∗α(t)lβ(t − τ)〉〉. (47)

If this were the case we would have found an algebraic structure and theHeff from the SL
picture, which would be numerically equal to theaαγ and shift obtained from the trace-out
technique. In what follows we will show that this is not possible to do. To show this fact we
use rule (46) in the following cases

χαβ(−τ) ≡ TrB(ρ
e
BB

†
αBβ(−τ))←→ 〈〈l∗α(t)lβ(t − τ)〉〉

χ∗α′β ′(−τ) ≡ TrB(ρ
e
BBβ(−τ)B†

α)←→ 〈〈l∗α(t)lβ(t − τ)〉〉
(48)

where we have used thatBα′ = B†
α , Bβ ′ = B†

β .
From the rhs of (48) this mapping would be consistent, from the quantum point of view,

if and only if

χαβ(−τ) = χ∗α′β ′(−τ) (49)

which means that

TrB(ρ
e
BB

†
αBβ(−τ)) = TrB(ρ

e
BBβ(−τ)B†

α). (50)

But in general this condition is not true because bath operators do not commute. Therefore,
due to the non-commutativity of bath operators, an inconsistency to calculate the correlation
functions〈〈l∗α(t)lβ(t − τ)〉〉 results from assignation (47). Only at infinite temperature (where
ρeB ≡ e−βHB /Tr[e−βHB ] is the identity operator inHB) could condition (50) be satisfied.
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Then, at infinite temperature, the random Hamiltonian approach, withH̃ (t) =∑n
α=1 lα(t)Vα

(whose generator is characterized by (43) to (45)), would give exactly the same result as the
one obtained from tracing-out techniques (withHI =

∑n
α=1Vα⊗Bα). We emphasize that the

same conclusion was found by Abragam (without splitting the KL) in the context of nuclear
magnetism [27].

Finally we remark that owing to the Hermiticity of̃H(t) it follows that if lα(t) were
complex numbers there would be an indexα′ such thatlα′ (t) would be the complex conjugate
of lα(t) (Vα′ = V †

α ), i.e. lα′ (t) = l∗α(t), otherwiseH̃ (t) would not be Hermitian. Note that in
the particular case when an operatorVα is Hermitian the noiselα(t) ought to be real. These
are very restrictive conditions on the noises. This is the main reason why we cannot find a
consistent map for a Hermitian model ofF(t). In the next sections we analyse the cases when
F(t) are anti-Hermitian and non-Hermitian.

3.3. Case whenF(t) is an anti-Hermitian random operator

In this section we assume that the random operatorF(t) is anti-Hermitian. Using (25) it is
trivial to see thatF(t) = −F†(t) is equivalent toF(t) = −iŨ (t) andH̃ (t) = 0. Therefore
the evolution is given by

d

dt
|9〉 = −iHS |9〉 − λ(U + Ũ (t))|9〉 (51)

and each realization of thestochastic matrixρst (t) satisfies

d

dt
ρst (t) = −i[HS, ρst (t)] − λ{U + Ũ (t), ρst (t)}+. (52)

It is simple to see that the generator obtained from (52) is the same one as in the Hermitian
case by performing the following changes: replaceH̃ (t) by Ũ (t) and change the sign of the
shift contribution (see appendix B). In this case the norm of the SWF is only conserved in
mean value.

If we assume that iF(t) = Ũ (t) = ∑n
α=1 lα(t)Vα, (n 6 N2 − 1), and we try to match

with the trace-out technique, the same problems as in the Hermitian case are found. That
is, a correlation map cannot be established consistently because of the assignation (46). The
responsibility of this one-to-one correspondence (46), is now the Hermiticity ofŨ (t). As
in the Hermitian caseF(t), if the correlations of the noises were white, the shift cancel out
and the dissipative generator would give thestandardKL semigroup. In the next section we
analyse the most general case of the SL picture.

3.4. Case whenF(t) is a non-Hermitian random operator

Contrary to what happens by tracing-out and also in the case whenF(t) is Hermitian (or
anti-Hermitian as in the previous section), here in the non-Hermitian case,F(t) 6= F†(t),
the pseudo-correlations〈〈lα(t)lβ(t − τ)〉〉 necessarily appear in the stochastic theory, i.e. the
generator (33) cannot be expressed only in terms of〈〈l∗α(t)lβ(t − τ)〉〉.

Note that in this case, and if in particular we assume white noises

〈〈l∗α(t)lβ(t − τ)〉〉 = δαβ δ(τ ) 〈〈lα(t) lβ(t − τ)〉〉 = 0 (53)

from (32) we getU = 1
2

∑
α V

†
α Vα, (λ = 1), then re-obtaining van Kampen’s approach [20].

Now we want to solve the problem of finding noiseslα(t) in such a way thataαγ andHeff
are numerically equal to the terms coming from the tracing-out technique. Since in this case
we do not impose any restriction onlα(t) (unlike in previous sections 3.2 and 3.3) it allows us
to get a consistentcorrelation mapping.
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We start by analysing the dissipative part. Assume that we have found noises such that
the following equality is true

TrB(ρ
e
BB

†
αBβ(−τ)) ?=〈〈l∗α(t)lβ(t − τ)〉〉. (54)

In order to see if there is some contradiction in the assignation rule (54) we now proceed to do
the same steps that we made in previous sections. As before, becauseH

†
I ≡ HI , there exist

anα′ andβ ′ such that:Bα′ = B†
α, Bβ ′ = B†

β ; then from (54) it follows:

χαβ(−τ) ≡ TrB(ρ
e
BB

†
αBβ(−τ))←→ 〈〈l∗α(t)lβ(t − τ)〉〉

χ∗α′β ′(−τ) ≡ TrB(ρ
e
BBβ(−τ)B†

α)←→ 〈〈lα′(t)l∗β ′(t − τ)〉〉.
(55)

But because†lα′(t) 6= l∗α(t) andlβ ′(t) 6= l∗β(t) there is no inconsistency in (55). Furthermore,
note thatχ∗αβ(−τ) trivially does not introduce any new restriction, and on the other hand the
stationary propertyχβα(−τ) = χ∗αβ(τ ) indicates that the associated (54) forχβα(−τ) does not
impose any new restriction to build〈〈l∗α(t)lβ(t − τ)〉〉.

In this manner, we arrive to the same dissipative KL form that was obtained from the
tracing-out technique and without any inconsistency in the assignation rule (54). This is
because in the present case it isnot possibleto establish the one-to-one mapping between bath
operatorsBα and complex noiseslα(t), as in (46).

We remark that for the noise correlations〈〈l∗α(t)lβ(t−τ)〉〉, there are in fact four functions
corresponding to the cross-correlations between the real and imaginary parts of the noises
lα(t). Equality (54) gives only two equations to determine these four real correlations. This
gives us two (free) degrees of freedom in the choice of the complex noises.

Now we proceed to check if there is some contradiction to try to match with the non-
dissipative part of the generator (6). This task can be tackled because we still have two degrees
of freedom to try to establish the following equality

TrB(ρ
e
BBαBβ(−τ)) ?=〈〈lα(t)lβ(t − τ)〉〉. (56)

Even when this formula only introduces two new restrictions, these areinconsistentwith the
previous one (54). To prove this fact note that, because the interaction HamiltonianHI is
Hermitian, there always exist anα′ such thatBα′ = B†

α, Vα′ = V †
α . Then, from the quantum

point of view it is true that

0α′β(−τ) = χαβ(−τ) = TrB(ρ
e
BB

†
αBβ(−τ))

0αβ(−τ) = χα′β(−τ) = TrB(ρ
e
BBαBβ(−τ))

(57)

and this must be true for all couples (α,α′) appearing inHI . Therefore from (57) it follows
that the noise correlations should fulfil

〈〈lα′(t)lβ(t − τ)〉〉 = 〈〈l∗α(t)lβ(t − τ)〉〉
〈〈lα(t)lβ(t − τ)〉〉 = 〈〈l∗α′(t)lβ(t − τ)〉〉.

(58)

From these equations it is possible to see that for all couples (α,α′) appearing inHI , it must
be true that

lα′(t) = l∗α(t). (59)

But if this is so,F(t) would be Hermitian and the Hermitian case only matches the dissipative
part from the trace-out technique at infinite temperature (see section 3.2). This is not the case
of interest in the present section. Therefore in order not to get any inconsistency from (56)
we have to match, simultaneously, both the irreversible and reversible part of the generator

† Note that ifF(t) were Hermitian there should be (for allα, β) a couple (α′, β ′) such thatlα′ (t) = l∗α(t) and
lβ ′ (t) = l∗β(t) with Vα′ = V †

α , Vβ ′ = V †
β .
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(6). Therefore, two degrees of freedom are still undetermined. The remarkable point is that
we can use this freedom to choose〈〈lα(t)lβ(t − τ)〉〉 = 0. Then the resulting finalcorrelation
mappingis

χαβ(−τ) ≡ TrB(ρ
e
BB

†
αBβ(−τ)) = 〈〈l∗α(t)lβ(t − τ)〉〉

〈〈lα(t)lβ(t − τ)〉〉 = 0.
(60)

In this way thecorrelation mapping—for the SL picture—will reproduce exactly the same
dissipative part as is obtained from tracing-out techniques.

We emphasize that with this assignation rule and from (38), the shift coming from the SL
picture is null, thereforeHeff = HS . Nevertheless, a shift can always be trivially incorporated
into the stochastic dynamics. Also from (32) and (35) follows the identity

λU = D. (61)

Then the SL picture, which is in correspondence with the Born–Markov approximation, is
given by

d

dt
|9〉 = [−iHS −D − iλF(t)]|9〉 (62)

whereF(t) = ∑n
α=1 lα(t)Vα, and where the noises are consistently determined by the

correlating map (60). From (62) we can see, in the second-order approximation, thatλU = D
is responsible for the dissipation, andF(t) produces the fluctuating termF [•] in the KL form
obtained from trace-out technique.

3.5. Mapping an arbitrary algebraic structure

In the previous section we have given an SL evolution to an open quantum system (where
all the effects of the bath were introduced through non-white noises), that in the Markovian
approximation corresponds to the generator of trace-out technique. Now we will investigate
the possibility of assigning an SL dynamics (22) to a givenarbitrary positive generator. This
means that the algebraic structure obtained from SL (39) will be equal to a given algebraic
structureaαγ , (i.e. anM × M positive Hermitian matrix whereM = N2 − 1). Then (39)
provides a set of12M(M + 1) equations for the unknown noise correlations

aαγ = λ2
∑
β

∫ ∞
0

dτ (〈〈l∗γ (t)lβ(t − τ)〉〉Cβα(−τ) + 〈〈lα(t)l∗β(t − τ)〉〉C∗βγ (−τ)). (63)

For the case of a system in contact with a thermal bath, we have solved this non-trivial problem
just by making the correlation mapping that we presented in previous sections. Obviously this
method does not work in the general case.

For the general situation, we can assume that we have found a basis where the givenaαγ is
diagonal; in addition, the noises can be assumed to be statistically independent from each other.
Then from (63) we arrive at a simpler set of equations for the unknown noise correlations:

aαα = λ2
∫ ∞

0
dτ Re[〈〈l∗α(t)lα(t − τ)〉〉Cαα(−τ)] (64)

and forα 6= γ

0=
∫ ∞

0
dτ (〈〈l∗γ (t)lγ (t − τ)〉〉Cγα(−τ) + 〈〈lα(t)l∗α(t − τ)〉〉C∗αγ (−τ)) (65)

which are equations for the half-Fourier transform of the correlations.
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Remark 6. We see that these expressions are trivially satisfied when noises are white, then it
is always possible to associate a white stochastic dynamics with a KL generator. On the other
hand, analysing (65), we see that in order to assign a colour dynamics to a given positive
generator, the set{Vβ}nβ=1 ought to be closed under Heisenberg representation.

We are aware that the same condition was also obtained in remark 3, analysing the Born–
Markov approximation. As we have remarked before, the Born–Markov approach is an
approximation for the non-Markovian evolution of an open quantum system. From these
facts we conclude that the problem of the positivity of a generator is closely related with
the type of underlying dynamics from which it is obtained. That is:white dynamicsalways
leads to a positive generator; on the contrary to obtain a positive generator from anunderlying
non-Markovian dynamicsthe closure condition ought to be fulfilled.

4. Conclusions

This paper is concerned with the SL model emphasizing its connection with KL generators and
the Born–Markov approximation. This picture, unlike other formalisms, starts postulating a
non-Markovian (linear) evolution for the stochastic state vector|9〉of an open quantum system.

Introducing in the SL dynamics a perturbation theory in the Kubo number, we proved that
the density matrixρ = 〈ρst (t)〉 fulfils an evolution equation which has a KL form (section 3.1).
At this point we made a fundamental assumption, that the environment causing fluctuations
can be modelled by complex non-white noises, and we discarded the use of stochastic operator.
In this case, whenF(t) =∑n

α=1 lα(t)Vα, the SL picture gives rise to three remarkable points:

(i) First, it gives a stochastic non-Markovian evolution, as a possible way to build up KL
generators that represent, in an empirical way, different physical situations and in addition
assure positivity. Three different models of evolution are available: the Hermitian, anti-
Hermitian and the full non-Hermitian case (sections 3.2–3.4).

(ii) The second point comes from the fact that it is possible to map the stochastic wave
evolution with the trace-out dynamics. This is, we have found theunderlyingstochastic
non-Markovian evolution, that in the Markovian approximation give the same result that
the Born–Markov approximation—at any temperature—and where all the information of
the quantum bath is introduced through correlated noises. Even more, we have been able
to interpret, in the weak coupling approximation, the origin of the dissipative operatorD

and the fluctuating superoperatorF [•].
(iii) Thirdly, it gives a stochastic wave evolution that in mean value corresponds to a given

positive algebraic structure (section 3.5). In that section, we also proved that it is always
possible to assign a white stochastic evolution to a given positive algebraic structure. On
the other hand a coloured evolution can only be assigned if the set of operators{Vβ}
satisfies closure under Heisenberg representation (this condition was also obtained in the
trace-out, see remark 3).

Concerning the completely positive condition of the map, we have concluded, in
section 3.5, that the positivity or not of the algebraic structure is closely related with the
type of dynamics from which it is obtained. That is:whitedynamics always leads to a positive
generator; on the contrary, to obtain a positive generator from anunderlying non-Markovian
dynamicsthe closure condition ought to be fulfilled.

In appendix B we emphasized the parallelism between the SL picture and the quantum
semigroup, highlighting that the structure of commutators and anticommutator appearing in a
KL generator, also appears—in a natural way—from the SL picture.
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In this paper we are only concerned with the Markovian approximation. Nevertheless,
owing to the fact that our approach provides a non-Markovian SWF, this theory allows us
to explore the consequences of having an underlying colour dynamics, and to see how this
dynamics ‘effectively’ appears in the Markovian approach. As a matter of fact, the possibility
to work out,numerically, with a non-white evolution for the stochastic state vector is under
investigation. This type of evolution is useful in solid-state physics. On the other hand, how
the different stochastic dynamics arise and how the correlations betweenH̃ (t) andŨ (t) come
out from different approximations (and physical situations) are interesting subjects which are
under investigation. Finally, our non-Markovian stochastic picture is a plausible starting point
to work out higher perturbations which could go beyond the weak coupling approximation.
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Appendix A. Davies’ device

If tracing out the bath variables does not lead to a quantum semigroup, it is always possible to
introduce amathematical device—due to Davies—which leads to a KL generator. This device
is defined by

K# = lim
T→∞

1

2T

∫ T

−T
exp(it [HS, •])K exp(−it [HS, •]) dt (A1)

whereK is the generator of the tracing-out technique in the weak coupling limit, and
exp(it [HS, •])K ≡ eitHSKe−itHS .

If the spectrum ofHS is non-degenerate, it is known that after Davies’ device the diagonal
elements of the density matrix evolve obeying a Pauli master equation, and the non-diagonal
elements decay oscillating. The term giving rise to the gain in the Pauli master equation is
F #[•] and the lost term comes from−{D#, •}+.

In order to know which Hamiltonians (S +B) could lead to positive KL generators, we are
going to explore theinvarianceunder Davies’ device of the generatorsK. This invariance can
be characterized in terms of the evolution of the interaction HamiltonianHI(−τ). A sufficient
condition to guarantee the invariance ofHeff ,D andF [•] is∫ ∞

0
dτ TrB(HI (−τ)ρ ⊗ ρeBHI )

=
∫ ∞

0
dτ TrB

(
lim
T→∞

1

2T

∫ T

−T
dt HI (t − τ)ρ ⊗ ρeBHI (t)

)
. (A2)

Here we show condition (A2) in the particular case of a spin systemHS = αSzBz
(Sz the z angular momentum andBz a magnetic field), with an interaction Hamiltonian
HI =

∑N−1
k=1

∑k
q=−k T

q

k ⊗ Bqk , (T qk are irreducible spherical tensor operators of rankk [15]
acting on the systemS, andBqk are bath operators). Then the invariance is given by the
condition ∫ ∞

0
dτ TrB(ρ

e
BB

q

k · Bq
′
k′ (−τ))e−iq ′τ = 0 for q ′ 6= −q. (A3)
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From (A3) we note that the effect of Davies’ average is to eliminate the terms inK which
do not have the symmetry under a rotation in thez direction, i.e. the same symmetry asHS.
Only in this form is the invariance of the corresponding generatorsK guaranteed. Condition
(A3) might be seen restrictive to few interaction HamiltoniansHI , but we have found that this
condition is a clear and plausible physical interpretation of what Davies’ device produces in
this model.

Appendix B. Quantum semigroup and SL picture

Here we are going to see another form of writing the infinitesimal dissipative KL generator,
and we show how this form naturally arises in the SL picture. Note that if we use the relations

2AB = {A,B}+ + [A,B]

2(AρB +BρA) = {A, {B, ρ}+}+ − [A, [B, ρ]]

2(AρB − BρA) = [A, {B, ρ}+] − {A, [B, ρ]}+
(B1)

which are valid for any operatorsA andB, it is possible to rewrite the operatorD and the
superoperatorF [•] in the form

D = 1
4

N2−1∑
α,γ=1

aαγ ({V †
γ , Vα}+ + [V †

γ , Vα])

F [ρ] = 1
4

N2−1∑
α,γ=1

aαγ ({Vα{V †
γ , ρ}+}+ − [Vα, [V

†
γ , ρ]] + [Vα, {V †

γ , ρ}+] − {Vα, [V †
γ , ρ]}+).

(B2)

Now if the basis is Hermitian,Vγ = V †
γ , and using the fact that matrixaαγ is Hermitian,

we can putaαγ ≡ bαγ + icαγ wherebαγ is a symmetric matrix andcαγ antisymmetric:

LD[ρ] = − 1
4

N2−1∑
α,γ=1

bαγ ({{Vα, Vγ }+, ρ}+ + [Vα, [Vγ , ρ]] − {Vα, {Vγ , ρ}+}+)

+
i

4

N2−1∑
α,γ=1

cαγ ({[Vα, Vγ ], ρ}+ + [Vα, {Vγ , ρ}+] − {Vα, [Vγ , ρ]}+) (B3)

whereLD[•] = K[•] + i[Heff , •].
Now in the SL picture, we want findU , Heff , D andF [•] as a function ofH̃ (t) and

Ũ (t). In order to do this, introduce (25) in the expressions (32) and (34)–(36). In what follows
the cumulant notation〈〈· · ·〉〉 has been dropped for simplicity. From equation (32) for the
deterministic unknown operatorU we get

U = λ
∫ ∞

0
dτ ({Ũ (t), Ũ (t − τ)}+ + i[Ũ (t), H̃ (t − τ)]). (B4)

From (34) it follows that the effective Hamiltonian is

Heff = HS − i
λ2

2

∫ ∞
0

dτ ([H̃ (t), H̃ (t − τ)] − [Ũ (t), Ũ (t − τ)]

−i({H̃ (t), Ũ (t − τ)}+ + {Ũ (t), H̃ (t − τ)}+)) (B5)

and the dissipative operatorD reads

D = λ2

2

∫ ∞
0

dτ ({H̃ (t), H̃ (t − τ)}+ + {Ũ (t), Ũ (t − τ)}+
−i([H̃ (t), Ũ (t − τ)] − [Ũ (t), H̃ (t − τ)])). (B6)
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Finally, with the aid of (B1) the fluctuating superoperatorF [•] results:

F [•] = λ2

2

∫ ∞
0

dτ ({H̃ (t), {H̃ (t − τ), •}+}+ − [H̃ (t), [H̃ (t − τ), •]]

+{Ũ (t), {Ũ (t − τ), •}+}+ − [Ũ (t), [Ũ (t − τ), •]]
+i([H̃ (t), {Ũ (t − τ), •}+] − {H̃ (t), [Ũ (t − τ), •]}+)
−i([Ũ (t), {H̃ (t − τ), •}+] − {Ũ (t), [H̃ (t − τ), •]}+)). (B7)

Now we compare expressions (B6), (B7) with the dissipative KL generator given in
formula (B3). Then we see that any semigroup has a combination of commutator and
anticommutator objects and these combinations appear in a natural way (in a second-order
perturbation theory) from the SL picture. On the other hand we see that the imaginary part
comes from thecross-correlationbetweenH̃ (t) andŨ (t), but the real part comes from the
self-correlationsof H̃ (t) andŨ (t).
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